Chatbots generativos y 6 formas para mejorar la ciberseguridad

Los chatbots generativos y los modelos de lenguaje (LLM) grandes pueden ser un arma de doble filo desde una perspectiva de riesgo. La rápida aparición de ChatGPT de Open AI ha sido una de las historias más importantes del año, con el impacto potencial de los chatbots generativos de IA y los modelos de lenguaje extenso (LLM) en la ciberseguridad como un área clave de discusión. Se ha hablado mucho sobre los riesgos de seguridad que podrían presentar estas nuevas tecnologías: Algunos países, estados de EE.UU. y empresas han ordenado prohibiciones sobre el uso de tecnología generativa de IA como ChatGPT por motivos de seguridad, protección y privacidad de datos. Claramente, los riesgos de seguridad introducidos por los chatbots generativos de IA y los grandes LLM son considerables. Sin embargo, estos mismos dispositivos pueden mejorar la ciberseguridad para las empresas de múltiples maneras, dando a los equipos responsablea del área un impulso muy necesario en la lucha contra la actividad cibercriminal. Aquí hay seis formas en que los chatbots de IA generativa y los LLM pueden mejorar la seguridad. Análisis y filtrado de vulnerabilidades Según un informe de Cloud Security Alliance (CSA) que explora las implicaciones de ciberseguridad de los LLM, los modelos generativos de IA se pueden utilizar para mejorar significativamente el escaneo y filtrado de vulnerabilidades. En el documento, CSA demostró que la API Codex de OpenAI es un escáner de vulnerabilidades efectivo para lenguajes de programación como C, C #, Java y JavaScript. Podría interesarle: El enemigo de la ciberseguridad también habita dentro de la empresa Por ejemplo, se podría desarrollar un escáner para detectar y marcar patrones de código inseguros en varios lenguajes, ayudando a los desarrolladores a abordar posibles vulnerabilidades antes de que se conviertan en riesgos críticos de seguridad. En cuanto al filtrado, los modelos generativos de IA pueden explicar y agregar un contexto valioso a los identificadores de amenazas que, de otro modo, el personal de seguridad humano podría pasar por alto. Reacomodo de fuerzas Otro ejemplo lo encontramos en TT1059.001, un identificador de técnica dentro del marco MITRE ATT&CK, que puede informarse pero no estar familiarizado con algunos profesionales de ciberseguridad, lo que genera la necesidad de una explicación concisa. ChatGPT puede reconocer con precisión el código como un identificador MITRE ATT&CK y proporcionar una explicación del problema específico asociado con él, el cual implica el uso de scripts maliciosos de PowerShell. También profundiza en la naturaleza de PowerShell y su uso potencial en ataques de ciberseguridad, ofreciendo ejemplos relevantes. En mayo, OX Security anunció el lanzamiento de OX-GPT, una integración de ChatGPT diseñada para ayudar a los desarrolladores con recomendaciones de corrección de código personalizadas y corrección de código de cortar y pegar, incluida: Invertir complementos, analizar API de archivos PE Matt Fulmer, gerente de ingeniería de inteligencia cibernética en Deep Instinct señala que la tecnología generativa AI/LLM se puede utilizar para ayudar a construir reglas y revertir complementos populares basados en marcos de ingeniería inversa como IDA y Ghidra. Agrega que los LLM también pueden ayudar a comunicarse a través de aplicaciones, con la capacidad de analizar API de archivos ejecutables portátiles (PE) y decirle para qué se pueden usar. “Esto puede reducir el tiempo que los investigadores de seguridad pasan revisando archivos PE y analizando la comunicación API dentro de ellos”. Consultas de búsqueda de amenazas Los defensores de la seguridad pueden mejorar la eficiencia y acelerar los tiempos de respuesta aprovechando ChatGPT y otros LLM para crear consultas de búsqueda de amenazas, según CSA. Al generar consultas para herramientas de investigación y detección de malware como YARA, ChatGPT ayuda a identificar y mitigar rápidamente amenazas potenciales, lo que permite a los defensores concentrarse en aspectos críticos de sus esfuerzos de ciberseguridad. Esta capacidad resulta invaluable para mantener una postura de seguridad sólida en un panorama de amenazas en constante evolución. Las reglas se pueden adaptar en función de los requisitos específicos y las amenazas que una organización desea detectar o supervisar en su entorno. La IA puede mejorar la seguridad de la cadena de suministro Los modelos de IA generativa se pueden utilizar para abordar los riesgos de seguridad de la cadena de suministro al identificar las posibles vulnerabilidades de los proveedores. En abril, SecurityScorecard anunció el lanzamiento de una nueva plataforma de calificación de seguridad para hacer precisamente esto a través de la integración con el sistema GPT-4 de OpenAI y la búsqueda global en lenguaje natural. Los clientes pueden hacer preguntas abiertas sobre su ecosistema empresarial, incluidos detalles sobre sus proveedores, y obtener rápidamente respuestas para impulsar las decisiones de gestión de riesgos, según la firma. Los ejemplos incluyen “encontrar mis 10 proveedores con la calificación más baja” o “muéstrenme cuáles de mis proveedores críticos fueron violados el año pasado”, preguntas que, según SecurityScorecard, arrojarán resultados que permitirán a los equipos tomar decisiones de gestión de riesgos rápidamente. Generación y transferencia de códigos de seguridad Los LLM como ChatGPT se pueden usar para generar y transferir códigos de seguridad. CSA cita el ejemplo de una campaña de phishing que se ha dirigido con éxito a varios empleados dentro de una empresa, exponiendo potencialmente sus credenciales. Si bien se sabe qué empleados abrieron el correo electrónico de phishing, no está claro si sin darse cuenta ejecutaron el código malicioso diseñado para robar sus credenciales. Igualmente señala que la consulta ayuda a identificar cualquier actividad de inicio de sesión sospechosa que pueda estar relacionada con credenciales comprometidas. Chatbots generativos en acción Aquí, ChatGPT puede proporcionar una consulta de caza de defensor de Microsoft 365 para verificar los intentos de inicio de sesión de las cuentas de correo electrónico comprometidas, lo que ayuda a bloquear a los atacantes del sistema y aclara si el usuario necesita cambiar su contraseña. Es un buen ejemplo para reducir el tiempo a la acción durante una respuesta cibernética. Sobre la base del mismo ejemplo, puede tener el mismo problema y encontrar la consulta de caza de Microsoft 365 Defender, pero su sistema no funciona con el lenguaje

¡No te pierdas nada!

Inscríbete ahora y sé el primero en recibir todas las novedades y actualizaciones exclusivas de nuestra página

Utilizamos cookies propias y de terceros, únicamente se limitan a recoger información técnica para identificar la sesión con la finalidad de obtener información estadística, facilitar el acceso seguro y eficiente de la página web, con el fin de darle mejor servicio en la página. Si continúas navegando este sitio asumiremos que estás de acuerdo.
×

Hola!

Recibe información gratuita y personalizada

× ¡Recibe info personalizada!